Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Paediatr Anaesth ; 34(5): 467-476, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38358320

RESUMO

BACKGROUND: Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS: Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS: The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS: Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS: Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.


Assuntos
Anestesia , Anestésicos , Isoflurano , Cetose , Doença de Leigh , Doenças Mitocondriais , Humanos , Criança , Pré-Escolar , Camundongos , Animais , Doença de Leigh/genética , Dieta , Cetose/metabolismo , Convulsões , Complexo I de Transporte de Elétrons/metabolismo
2.
Brain Pathol ; 33(6): e13192, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552802

RESUMO

Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Humanos , Camundongos , Animais , Criança , Doença de Leigh/genética , Doença de Leigh/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Macrófagos/patologia , Tronco Encefálico/patologia , Modelos Animais de Doenças
3.
Biochemistry ; 60(4): 324-345, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464881

RESUMO

2-Oxoglutarate carboxylase (OGC), a unique member of the biotin-dependent carboxylase family from the order Aquificales, captures dissolved CO2 via the reductive tricarboxylic acid (rTCA) cycle. Structure and function studies of OGC may facilitate adaptation of the rTCA cycle to increase the level of carbon fixation for biofuel production. Here we compare the biotin carboxylase (BC) domain of Hydrogenobacter thermophilus OGC with the well-studied mesophilic homologues to identify features that may contribute to thermal stability and activity. We report three OGC BC X-ray structures, each bound to bicarbonate, ADP, or ADP-Mg2+, and propose that substrate binding at high temperatures is facilitated by interactions that stabilize the flexible subdomain B in a partially closed conformation. Kinetic measurements with varying ATP and biotin concentrations distinguish two temperature-dependent steps, consistent with biotin's rate-limiting role in organizing the active site. Transition state thermodynamic values derived from the Eyring equation indicate a larger positive ΔH⧧ and a less negative ΔS⧧ compared to those of a previously reported mesophilic homologue. These thermodynamic values are explained by partially rate limiting product release. Phylogenetic analysis of BC domains suggests that OGC diverged prior to Aquificales evolution. The phylogenetic tree identifies mis-annotations of the Aquificales BC sequences, including the Aquifex aeolicus pyruvate carboxylase structure. Notably, our structural data reveal that the OGC BC dimer comprises a "wet" dimerization interface that is dominated by hydrophilic interactions and structural water molecules common to all BC domains and likely facilitates the conformational changes associated with the catalytic cycle. Mutations in the dimerization domain demonstrate that dimerization contributes to thermal stability.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Carbono-Nitrogênio Ligases/química , Cristalografia por Raios X , Estabilidade Enzimática , Temperatura Alta , Domínios Proteicos , Relação Estrutura-Atividade
4.
Drug Metab Dispos ; 47(11): 1257-1269, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492693

RESUMO

Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Lapatinib/farmacocinética , Ativação Metabólica , Adulto , Idoso , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Genótipo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade
5.
Mitochondrial DNA B Resour ; 1(1): 903-904, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33473672

RESUMO

The southern brook lamprey (Ichthyomyzon gagei) is a non-parasitic lamprey endemic to the southeastern US. Here, we report the complete mitogenome of this basal vertebrate and found its genomic organization to be similar to that of other reported lamprey mitogenomes. Nucleotide sequence identities for individual proteins range from 90% to 94% when compared with the congeneric species I. fossor and I. unicuspis. Finally, phylogenetic analysis revealed I. gagei to be sister to these other species of Ichthyomyzon. These genomic data provide a baseline for future investigations regarding the molecular evolution of basal vertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...